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Objectives: The basal ganglia (BG) controls different patterns of behavior by receiving 
inputs from sensory-motor and pre-motor cortex and projecting it to pre-frontal, pre-motor 
and supplementary motor areas. As the exact role of BG in swallowing process has not been 
fully determined, we aimed at reviewing the published data on neurological control in the 
swallowing technique to have a better understanding of BG’s role in this performance. 

Methods: English-language articles, which were published before December 2015 and eligible 
for the present research, were extracted from databases according to the inclusion criteria, i.e. 
articles related to “neurological aspects of swallowing” and/or “lesions of sub-cortical or BG 
relevant to swallowing disorders”. 

Results: This systematic review indicates that BG is a complicated neurological structure 
with indistinct functions and that swallowing is a sophisticated process with several unknown 
aspects. 

Discussion: Swallowing is a multifaceted performance that needs contribution of the tongue, 
larynx, pharynx, and esophagus as well as the neurological structures such as neocortex and 
subcortical regions - BG and brainstem.
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1. Introduction 

wallowing is defined as a complex senso-
rimotor behavior that requires the co-ordi-
nated function of muscles located around 
the mouth, tongue, larynx, pharynx, and 
esophagus in order to transport food from 

the oral cavity to the stomach [1]. The volitional and au-

tomatic movements during swallowing, which are con-
trolled by more than 30 nerves and muscles [2-4], could 
be divided into three inter-related physiological stages: 
[1] the oral stage that is voluntary and highly variable in 
duration; [2] the pharyngeal stage during which trans-
location of bolus occurs from the oropharynx (throat) 
into the esophagus without aspiration; and [3] esopha-
geal stage in which the bolus moves through the lower 
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esophageal sphincter into the stomach under the control 
of autonomic nervous system [5-10]. Accurate control of 
the swallowing function relies on the exact innervations 
of several areas in the brain, including the neo-cortex, 
sub-cortical regions, brainstem, and peripheral nervous 
system [11]. The brainstem swallowing center is known 
as the first level of swallowing control while the subcor-
tical structures, such as basal ganglia (BG), hypothala-
mus, amygdala, and tegmental area of the midbrain, are 
in the next levels, and finally, there are supra-bulbar cor-
tical swallowing centers [12].

BG is a group of interconnected nuclei including 
striatum (further subdivided into putamen and caudate 
nuclei), Sub-Thalamic Nucleus (STN), globus pallidus 
external and internal segments (GPe and GPi, respec-
tively), and substantia nigra pars compacta and pars re-
ticulate (SNc and SNr, respectively). BG plays a vital 
role in a variety of motor, cognitive, and limbic functions 
by integrating the information derived from multiple 
cortical regions and conveying it back to frontal cortical 
regions and brainstem nuclei after processing it [13,14]. 

Although varied investigations have clarified the vari-
ous functions of the BG, its exact role in the swallowing 
process has not yet been fully comprehended. For in-
stance, a number of reports have indicated that damages 
and lesions of BG might lead to some degree of swal-
lowing disorders; but, little has been discussed about 
the probable mechanisms and pathways in this aspect. 
Hence, we decided to conduct a systematic review based 
on a number of clinical studies for a better understanding 
of BG’s function in swallowing.

2. Methods

Numerous English-language articles that were pub-
lished up to December 2015 and included keywords 
like swallowing, basal ganglia, swallowing neurology, 
neuro-imaging, dysphasia, and neurogenic dysphasia 
in their title or abstract were extracted from databases 

such as PubMed, Willy, Springer, and Elsevier (Medline, 
EBMR, Google Scholar, Science Direct, and ProQuest). 
Among these articles, eligible studies related to “neuro-
logical aspects of swallowing” and/or “lesions of sub-
cortical or BG relevant to swallowing disorders” were 
filtered out in accordance with our pre-decided inclusion 
criteria. Conversely, papers with no focus on BG and 
swallowing problems were excluded.

3. Results

The current systemic review revealed that despite ex-
tensive data published on swallowing neurology, only a 
few studies have focused on the topic considered here. 
For instance, the role of BG in the process of swallowing 
has been examined in papers on hemorrhagic BG [15], 
stroke [16-18], dementia, and traumatic brain injury [19, 
20]. Some studies have also focused on the role of the 
extra-pyramidal syndrome, such as Parkinson’s, Hun-
tington’s, and Wilson’s diseases in the swallowing pro-
cess [21-24]. In addition, there are a few reports on the 
swallowing performance in elderly individuals [25-28]. 

These limited publications indicate that swallowing is 
a sophisticated process with several unknown aspects. 
Nevertheless, it is necessary to mention that develop-
ments in neuroimaging techniques have improved our 
knowledge about BG functionality throughout the swal-
lowing process, which has been detected through cryp-
togram of the BG function in brain images during swal-
lowing. As summarized in Table 1, neuroimaging studies 
have confirmed the fact that swallowing involves the ac-
tivation of multiple areas in the human brain, including 
putamen, globus pallidus, substantia nigra, and BG.

Based on the reviewed papers, BG is linked to senso-
rimotor, supplementary motor, pre-motor, associative 
and limbic cortices through functionally related loops 
[32-35], and such somatotopic organization supports 
both motor and cognitive functions [36]. BG receives 
input from sensorimotor areas of the cerebral cortex, 

Table 1. Published reports on the BG function using neuroimaging technology.

Results Imaging Technique References

Recognized swallow-associated augmented blood in the putamen PET Hartnick et al. [29]

Rise in swallow-induced local activity in putamen, globus pallidus, and substantia nigra f-MRI Suzuki et al. [30]

The right putamen was introduced as a focal point for activation f-MRI Martin et al. [31]

Discovered BG activation through water oral combination f-MRI PET Hamdy et al. [20]
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Figure 1. Cortical and subcortical functional loops.

Figure 2. Striatum including GABAergic neurons (red), as globus pallidus externa (GPe) too, globus pallidus interna (GPi) and 
substantia nigra pars reticulata (SNr). SNr and GPi signify the output level of the BG, and are projected via various subpopula-
tions of neurons to tectum and brainstem motor centers. The indirect loop is represented by the GPe, the subthalamic nucleus 
(STN), and the output level (SNr/GPi). The striatal neurons of the direct pathway to SNr/GPi express D1R and substance P 
(D1/SP) while the indirect pathway neurons in striatum express D2R and enkephalin (D2/Enk). 
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which are primary and secondary somato-sensory, pri-
mary motor cortex, and premotor areas [37, 38]. In ad-
dition, BG has extensive connections with the thalamus 
and other sub-cortical structures [39, 40]. 

As presented in Figure 1, BG (striatum) receives input 
from all cortical areas and projects through the thalamus to 
prefrontal, premotor, and supplementary motor areas that 
are involved in motor planning. In the BG-thalamo-cor-
tical circuits, the thalamus acts as a sensory-relay station 
and conveys information about the sensation of eating and 
swallowing to other cortical and sub-cortical structures 
[39]. Both voluntary and involuntary movements happen-
ing during ingestion are further modified by the feedbacks 
received from kinesthetic images and other afferents con-
verging onto the BG, which further monitor and refine the 
movement progression in order to ensure the temporal and 
spatial accuracy [41]. Finally, BG notifies about the move-
ment-related cortices involved in the preparation for next 
act while promoting muscle relaxation [42].

4. Discussion

Swallowing is a multi-faceted performance with active 
neural synchronization at the cerebral and brainstem lev-
els. Studies on functional magnetic resonance imaging 
(fMRI) have recognized the anatomic sections, which 
are active during swallowing, including the chief senso-
ry and motor cortex, additional motor area (SMA), cin-
gulate cortex, insula, operculum, prefrontal and inferior 
frontal cortices, BG, thalamus, and cerebellum [43-48]. 
As mentioned earlier, automatic movements of swallow-
ing are controlled by BG that establishes accurate timing 
and spacing in this process [37, 38]. 

Although the rhythmic pattern of mastication is con-
trolled by the central pattern generator in the brainstem, 
it is supplemented by the motor cortex that provides pre-
programmed movement patterns based on expectations 
and sensory feedbacks in conjunction with BG. The pro-
duction level of BG includes active GABAergic neurons 
arising from two nuclei, GPi and SNr. The sub-popula-
tions of GABAergic neurons from the structure have out-
standing projections to diverse motor cores in the brain-
stem [49]. As these neurons are tonically energetic at rest, 
they can sustain the incessant inhibitory drive [50-56]. 

Therefore, starting a motor program similar to swal-
lowing depends on the elimination of such tonic reti-
cence; hence, the pallidal output neurons must be inhib-
ited from the input layer of BG [51, 53, 57-59]. Beyond 
the pallidal control of motor centers, the neurons pro-
jected by pallidum returns to the groups of cells inside 

the thalamus and are further projected back to the cortex. 
The pallido-thalamo-cortical loop controls emotions, 
swallowing, and motor and cognitive functions [60]. It is 
worth mentioning that in neurological diseases like Par-
kinson’s, the cortex is out of the loop, and hence, all the 
actions of BG are done straightforwardly over brainstem 
targets [61].

It is also essential to review the BG-nuclei that man-
age the output level as discussed in previous studies. 
As demonstrated in Figure 2, the projection neurons in 
the striatum are divided into two groups. Firstly are the 
dopamine receptors D1 type (D1R) that project straight-
forwardly to subpopulations of neurons at the produc-
tion level (SNr/GPi) and get involved in the beginning 
of motor programs of swallowing, and secondly are the 
dopamine D2 receptors (D2R) that project to GPe - a 
neural structure that contributes with STN and restrain 
movements [61-63]. 

The subpopulation of D1R projected neurons control 
the fundamental aspects of motor performance of swal-
lowing and depend on the excitatory inputs from thala-
mus and cortex/pallium, which further verifies whether 
they are activated or not. In case activated, the D1R neu-
rons will participate in the instigation of a given motor 
program for swallowing [64, 65]. The tonic level of do-
pamine discharge resolves the responsiveness of the stri-
atal neurons, and thus, the negligible dopamine makes it 
intricate to activate the movements, similar to that ob-
served in Parkinson’s disease [66]. Dopamine neurons of 
BG have another characteristic importance in the motor 
system, i.e., they react with short-lasting bursts of activ-
ity throughout the awareness - a trait that can be impor-
tant in promoting the knowledge of swallowing behavior 
[67, 68]. Despite their significance, our understanding of 
neural circuits, which are responsible for the value-based 
changes in dopamine discharge, is not complete [69-71]. 

It is, therefore, important to mention the dissimilar 
components inside the BG-controlled special motor pro-
grams. The swallowing process depends on the input 
from pallium/cortex, thalamus and the dopamine system 
and includes various parts of both direct (D1) and indi-
rect pathways (D2). The production cells from GPi and 
SNr aim at the diverse motor centers [55, 71]. The se-
lection of specific units depends on the excitatory input 
from thalamus and pallium/cortex along with the degree 
of tonic dopamine activity, which collectively define the 
prototype of BG’s behavior. In addition varied other mo-
tor patterns can be shared, for instance, one can swallow 
and chew simultaneously while one can only turn left or 
right and not both at the same time [59]. 
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Therefore, mechanisms must be discovered for governing 
different behaviors of BG. Nevertheless, it is obvious that 
the BG plays a key role in making a flat series of move-
ments [65]. Therefore, movement skills are compromised 
in patients with Parkinson’s disease, and there is a propen-
sity to carry out merely one motor pattern at a time [72].

In this review study, we aimed at clarifying the role of 
the BG in the swallowing process for the first time. Re-
viewing of the published data on neurological control in 
swallowing process revealed that BG is one of the most 
complicated neurological structures, partially due to its 
location in the brain with indistinct performances. On 
the other hand, few published studies have focused on 
neurological aspects of swallowing, indicating that it is 
a sophisticated process with several unknown aspects. 
However, with the help of neuroimaging techniques, it 
has been confirmed that BG is linked to neural structures 
that support motor and cognitive functions such as the 
one involved in swallowing. BG receives input from all 
the cortical areas and projects to prefrontal, pre-motor, 
and supplementary motor areas through the thalamus. In 
BG-thalamo-cortical circuits, the thalamus conveys the 
information about the sensation of eating and swallow-
ing to other structures while BG monitors the movement 
of progression to ensure the accuracy of swallowing 
from its different aspects. 
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