
217

I ranian R ehabilitation Journal June 2022, Volume 20, Number 2

Research Paper
Identifying Gene Signature in RNA Sequencing Multiple 
Sclerosis Data

Taiebe Kenarangi1 , Enayatolah Bakhshi1 , Kolsoum Inanloo Rahatloo2 , Akbar Biglarian3*  

1. Department of Biostatistics and Epidemiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran. 
2. Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
3. Department of Biostatistics and Epidemiology, Social Determinants of Health Research Center, University of Social Welfare and Rehabili-
tation Sciences, Tehran, Iran.

* Corresponding Author: 
Akbar Biglarian, PhD.
Address: Department of Biostatistics and Epidemiology, Social Determinants of Health Research Center, University of Social Welfare and 
Rehabilitation Sciences, Tehran, Iran.
Tel: +98 (21) 22180146
E-mail: abiglarian@uswr.ac.ir

Objectives: Multiple Sclerosis (MS) is a complex central nervous system disease; it 
is the result of a combination of genetic predispositions and a nongenetic trigger. This 
study aims to find the gene signatures using a Pareto optimization algorithm for MS RNA 
sequencing (RNA-seq) data.

Methods: This case-control study involved 50 samples (25 MS patients and 25 age-matched 
healthy individuals) and their GSE profiles (GSE123496) were selected from the National 
Center for Biotechnology Information Gene Expression Omnibus database. We used Pareto-
optimal cluster size identification to find the gene signatures in the RNA-seq data. After 
prefiltering and normalizing the data, we used the Limma package to find the differentially 
expressed genes (DEGs). The Pareto-optimal cluster size for these DEGs was then determined 
using the technique, multi-objective optimization for collecting the clusters alternatives. 
Afterward, the RNA-seq data were clustered via k-means with suitable cluster size. The 
best cluster, as a signature, was found by calculating the mean of the Spearman correlation 
coefficients (SCCs) of whole genes in the module in a pairwise manner. All analysis was 
performed in the R software, 4.1.1 package, under virtual space with 100 GB RAM.

Results: In total, 960 DEGs were identified by the Limma analysis. Among them, 720 
were up-regulated genes and 240 were down-regulated genes. Meanwhile, 6 Pareto-
optimal clusters were obtained. Two clusters that had the greatest average SCCs score 
(0.88 and 0.74, respectively) were chosen as the gene signatures.

Discussion: A total of 9 metabolic prognostic genes and 3 biological pathways were 
identified. These can provide more potent prognostic information for MS patients.
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Highlights 

● We identified 960 DEGs in MS (720 up-regulated and 240 down-regulated genes). 

● We used an optimization technique, namely multi-objective optimization for collecting the clusters alternatives 
(in the R software) to find the optimal cluster for the DEGs.

● We identified a gene signature containing 9 genes for MS.

Plain Language Summary 

MS is a chronic and vigorously disabling disease that affects the central nervous system. Researchers can find 
more effective therapies and cures for MS if they can detect its causes. Our findings could help researchers in 
treating and preventing MS. In our study, nine prognostic genes related to MS were recognized and also three bio-
logical pathways were identified. These can provide more potent prognostic information for MS patients and this 
could help researchers in treating and preventing MS.

1. Introduction

ultiple sclerosis (MS) is a complex 
central nervous system (CNS) disease 
with new aetiological elements being 
discovered all the time [1]. In this dis-
ease, myelin and axons are damaged to 

varying degrees [2]. There are reversible neurological 
impairments in most patients that are frequently fol-
lowed by step-by-step neurological declination over 
time [3]. MS affects women twice as much as it affects 
men. It usually strikes people between the ages of 20 
and 45. Clinical symptoms and supportive evidence 
from ancillary tests are used to diagnose the disease 
(CSF) [4]. In addition, MS is a heritable disease with 
a well-documented higher incidence in people with a 
family history of this disease [5]. The cause is unknown, 
although it appears to be the result of a combination of 
genetic predispositions and a nongenetic trigger, such 
as a virus, metabolism, or environmental factors, which 
results in a self-sustaining autoimmune illness with re-
curring immunological attacks on the CNS [6]. 

In recent years, deep sequencing has revolutionized 
biology and medicine, allowing us to understand nu-
cleic acid sequences at single base level precision in a 
high throughput manner. RNA sequencing (RNA-seq) 
is now a widely used tool to analyze gene expression 
and discover new RNA species [7]. One of the applica-
tions of the clustering methods in medicine is to iden-
tify subgroups or classes of a disease type. Ascertain-
ing the right number of clusters in a data file is a key 
question in partitioning clustering; however, there is 
no conclusive answer to this question. Consequently, 
the error rate may increase [8].

Cluster number estimation and also identifying the best 
cluster number is a multi-objective optimization prob-
lem. In this sense, cluster analysis can be considered an 
exploratory data mining technique that can be used. This 
study aims to use a multi-objective optimization strategy 
to identify the best cluster.

2. Materials and Methods

Data collection and gene expression analysis

In this study, mRNA expression datasets of MS pa-
tients and age-matched healthy individuals (control 
samples) were investigated. These expression datas-
ets were searched by “Multiple Sclerosis,” “mRNA,” 
and “Count” in the gene expression omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo). Finally, 
the GSE123496 profiles were selected and analyzed. 
To decide the significance of differentially expressed 
genes (DEGs), the adjusted P value (with the threshold 
of 0.05) was used by the Limma package in the Bio-
conductor software. In addition, an expression matrix 
from up- and down-regulated genes (mural DEGs) was 
built for the next analysis.

Identifying gene signatures

After finding the collection of DEGs, we utilized the 
multi-objective optimization for collecting the clusters 
alternatives (MOCCA) package (in the R program) on 
the data from the DEGs to characterize the convenient 
number of clusters (up- and down-regulated genes). 
Additionally, a bootstrapping method based on various 
cluster validity indices was used to obtain the stable 
(Pareto-optimal) cluster numbers by the MOCCA ap-
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proach. Accordingly, for all the unique cluster numbers, 
such as k, 3 clustering approaches, namely k-means, 
single-linkage, and neural gas clustering were used. 
Subsequently, using a variety of cluster validation indi-
ces (MCA, Jaccard, FM, and CQS) were clustered. To 
achieve the optimum number of clusters, 12 objective 
functions (k-means.MCA, k-means.Jaccard, k-means.
FM, k-means.neuralgas, CQS.MCA, neuralgas.Jacca-
rd, neuralgas.FM, neuralgas.CQS, single.MCA, single.
Jaccard, single.FM, single.CQS, single.MCA, single.
Jaccard, single) were used.

After determining the ideal number of clusters, k-
means clustering with the optimal cluster size was uti-
lized to identify the cluster information of each gene. 
Subsequently, the Spearman correlation coefficient 
(SCC) value derived from the involved paired genes 
was used to get the mean SCC value of each cluster. The 
cluster with the highest mean SCC value was picked as 
the best. In this yield, the gene set of the best cluster was 
used as a gene signature (Figure 1).

Figure 1. Flowchart of the Suggested framework to identify gene signature

Limma, linear models for microarray and RNA-Seq data.

MOCCA: multi-objective optimization for collecting the clusters alternatives; RNA-seq: RNA sequencing.

Figure 2. Identification of up- and down-regulated genes for multiple sclerosis dataset (volcano plot)
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The DAVID database was used to conduct the KEGG 
pathway analyses for the signature’s participating genes. 
Only the KEGG pathways with enrichment adjusted P 
value of less than 0.05 were included in this study.

Results

Data collection and DEGs identification 

In this study, we used GSE123496. The RNA-seq 
dataset contained 50 samples (25 MS patients and 25 
age-matched healthy individuals). By using the Limma 
package in the R software, differential expression analy-
sis was carried out between patients and healthy indi-
viduals. In total, 960 DEGs (720 up-regulated and 240 
down-regulated genes) were identified (supplementary 
file 1, Figure 2).

Determining gene signatures

As a result, the Pareto-optimal cluster size was dis-
covered to be 6. The objective values for each of the 12 
objective functions are provided in Table 1. After de-
termining the appropriate number of clusters (n=6), 
k-means clustering with the optimal cluster size was 
utilized to collect cluster information for each par-
ticipating gene. The SCC of the 6 clusters averaged 
0.206, 0.879, 0.744, 0.477, 0.361, and 0.569, respec-

tively. The gene signature was chosen as the second 
and third clusters with the highest mean SCC value 
(0.879, 0.744). The gene signature included 9 DEGs. 
The gene IDs and full names are provided in Table 2.

Pathway enrichment analysis

The DAVID online tool was utilized to find the en-
riched pathways with an adjusted P value of ≤ 0.05. 
In the GSEA analysis, 3 biological pathways were sig-
nificantly enriched. The KEGG pathway analysis indi-
cated that alternative complement activation, neutrophil 
degranulation, and activation of C3 and C5 were most 
prevalent in the final list (Table 3).

4. Discussion

MS is a central neuroinflammatory disease. Although 
the cause of MS is unknown, the most recent working 
model for disease pathogenesis argues that the interac-
tion of genetic and environmental variables is required 
for MS development [9]. As a result, prognostic bio-
marker identification in MS is critical. In this study, we 
used a multi-objective optimization strategy to identify 
prognostic gene signatures in MS patients.

Table 1. Values of 12 objectives in multi-objective optimization for collecting the clusters alternatives from the MS RNA se-
quencing dataset

Objectives Objective Value

k-means.MCA 0.6215

k-means.Jaccard 0.4386

k-means.FM 0.5983

k-means.CQS 0.9991

neuralgas.MCA 0.6580

neuralgas.Jaccard 0.4684

neuralgas.FM 0.6138

neuralgas.CQS 0.9885

single.MCA 0.6037

single.Jaccard 0.4118

single.FM 0.5849

single.CQS 0.9889
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Table 2. Names of genes related to the multiple sclerosis gene signature

Gene Symbol Full Name

CD74 CD74 molecule

VIM Vimentin

C3 Complement C3

CHI3L1 Chitinase 3 like 1

SERPINA3 Serpin family A member 3

AL049839.2 AL049839.2

WNK1 WNK lysine deficient protein kinase 1

HSPB1 Heat shock protein family B (small) member 1

DNAJB1 DNAJ heat shock protein family (HSP40) member B1

The protein produced by CD74 could have an inter-
mediary role in survival pathways and cell proliferation 
[10]. According to a previous study, CD74 expression in 
B cells is linked to early MS disease activity. This study 
also looked at how CD74 regulation and downstream 
CD74 impact human B cell function [11]. 

A type III intermediate filament protein is encoded by 
Vimentin. This protein plays a role in neuritogenesis and 
cholesterol transport and also has a host cell role [12].

According to recent research, the 14-3-3 protein family 
found in the cerebrospinal fluid of patients, such as MS 
patients, indicates severe brain damage [13]. 

The component that complements C3 is crucial to acti-
vating the complement system. Both the traditional and 
the alternative complement activation routes require its 
activation. In human patients, mutations in this gene are 
linked to atypical hemolytic uremic syndrome and age-
related macular degeneration [14].

Multiple types of demyelination and MS patients have 
synapse loss as a shared clinical characteristic [15]. The 
previous study was to see whether there was a link be-
tween C3 overexpression and synapse loss. As a result, 
complement C3 inhibition might be a potential treatment 
option for demyelinating disease [16]. 

Chitinases are enzymes that catalyze the hydrolysis of 
chitin, a glycopolymer prevalent in insect exoskeletons 
and fungal cell walls. Eight human members make up 
the glycoside hydrolase 18 families of chitinases. The 
protein encoded by this gene is hypothesized to be in-
volved in the inflammatory and tissue remodeling pro-
cesses [17].

Many different types of cells express CHI3L1, an ex-
tracellular monomeric single-chain glycoprotein. Pa-
tients with CNS inflammatory disorders have higher 
amounts of CHI3L1 in their cerebrospinal fluid [18]. 
In previous research, it was reported that the levels of 
CHI3L1 rose with age. This was supporting evidence 
that lower-grade inflammatory processes are produced 
in the aging brain [19]. 

Table 3. Differentially expressed pathways based on KEGG results

Pathway Name Adjusted P Genes

Alternative complement activation 0.002556 C3

Neutrophil degranulation 0.002919 CHI3L1, SERPINA3, C3

Activation of C3 and C5 0.004469 C3

Kenarangi T, et al. Gene Signature from RNA-Seq MS Data. IRJ. 2022; 20(2):217-224

http://irj.uswr.ac.ir/


222

I ranian R ehabilitation JournalJune 2022, Volume 20, Number 2

The protein encoded by SERPINA3 is serine protease 
inhibitors. Variations in the sequence of this protein have 
been linked to Alzheimer disease, and its shortage has 
been linked to liver illness [20].

In MS patients, SERPINA3 levels were considerably 
found. This may be has been linked to MS progression 
[21]. SERPINA3 has been related to hyperphosphoryla-
tion, which has been linked to neurodegeneration. These 
observations most probably indicate several functions of 
SERPINA3 that may play depending on the CNS’s com-
position [22, 23]. 

The WNK protein kinases could play a considerable 
role in blood pressure control. Hereditary sensory neu-
ropathy type II has been linked to mutations in this gene 
[24]. WNK1 is found in the CNS and is important in 
pathogenic nervous system signaling [25]. 

The encoded protein, related to HSP20, is essential for 
cell differentiation in a wide range of cell types, and its 
expression has been linked to poor clinical outcomes in 
a variety of human malignancies. Patients with distal he-
reditary motor neuropathy were reported to have muta-
tions in this gene [26].

Small heat shock proteins (HSPB110) signaling mol-
ecules play important roles in neuroinflammation [27]. 
Gorter et al. showed that HSPBs are mostly upregulated 
in astrocytes in spinal cord MS lesions, similar to the 
brain, but that expression levels of numerous HSPBs are 
significantly greater in the spinal cord and significantly 
altered throughout lesion development [28]. 

DNAJ family members have rolled in a variety of phys-
iological processes [29]. DNAJB1 is a member of the 
HSP family. This is differently expressed in all regions of 
the brain and, remarkably, it is always upregulated [30]. 
In addition, we detected an AL049839.2 domain-con-
taining protein as a novel protein (ENSG00000273259). 
However, we did not evaluate the association between 
this novel protein function and MS.In addition, the pre-
dicted genes were predominantly implicated in several 
pathways, according to the KEGG pathway analysis, 
including alternative complement activation, neutrophil 
degranulation, and activation of C3 and C5. 

The most important advantage of our study was that we 
developed the predictive gene signature from samples, an 
approach that has clinical applications. One limitation of 
this study was the unavailability of gene expression data, 
and we had to get it from public databases. 

5. Conclusion

Understanding what causes MS will help research-
ers identify more effective treatments and cures for the 
disease, or even prevent it from occurring. This study 
recognizes 9 prognostic genes related to MS and also 
identified three biological pathways. These can provide 
more potent prognostic information for MS patients.
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