Volume 16, Issue 3 (September 2018)                   Iranian Rehabilitation Journal 2018, 16(3): 219-232 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amirian N, Tabatabai Ghomsheh F, Vahedi M, Rouhbakhsh N, Jafarpisheh A S. Objective Peak-Detection in Complex Auditory Brainstem Response to /ba/, /da/, /ga/: A Novel Technique. Iranian Rehabilitation Journal 2018; 16 (3) :219-232
URL: http://irj.uswr.ac.ir/article-1-793-en.html
1- Department of Biomedical Engineering, Faculty of Technology and Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
2- Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
3- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
4- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
5- Department of Ergonomics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
Abstract:   (5857 Views)
Objectives: The result of auditory brainstem response is used worldwide for detecting hearing impairments or hearing aids. This study aimed to introduce the superiority of mathematical innovation algorithm toward subjective evaluation by an audiologist. The automatic algorithm method is encouraged for detecting the waves of Auditory Brainstem Response (ABR), because it can reduce subjective evaluation biases and visual analysis errors. This article portrays another technique for automatic detection of the peaks. Finally, by obtaining the standard pattern with this automatic algorithm for Persian speakers, we will compare it with the English speakers whose information was obtained by subjective method in Northwestern University. This article describes the effect of different factors on brainstem responses by performing a new automatic method.
Methods: Auditory evoked potentials of brainstem activity were recorded by Electro encephalogram (EEG) of 27 Persian speaker adults with normal hearing. Three stimulus /ga/, /da/, and /ba/ were presented. This strategy depends on the utilization of reference wave forms, time latencies, and peaks adjusted and comparison with the ABR. Brainstem response latencies of brainstem peaks were extracted by the automatic method in temporal and spectral domains. This step provides language patterns for Persian speakers. Finally, the results of Persian speakers were compared with the results of a previous study done in Northwestern University by the same recording protocol as our own study on 22 English speaker children. Intraclass correlation coefficients and paired t test were used for evaluating and comparing the results. 
Results: According to the results, the performance of automatic method is high and reliable. Automatic and visual analysis methods had significant interaction. Latency of auditory brainstem response to the same stimulus in the two study groups was different and had a significant latency. The significance of these discoveries and clinical outcomes of this target strategy are featured in this paper.
Discussion: This simple innovative algorithm could find the correct location of ABR peaks. Because of different acoustic signs and symptoms in the brainstem, the time latencies for all three stimulus used in this study are completely different.
Full-Text [PDF 800 kb]   (1921 Downloads) |   |   Full-Text (HTML)  (1546 Views)  
Article type: Original Research Articles | Subject: Audiology
Received: 2018/01/10 | Accepted: 2018/05/25 | Published: 2018/09/1

References
1. Jewett DL, Williston JS. Auditory-evoked far fields averaged from the scalp of humans. Brain. 1971; 94(4):681-96. [DOI:10.1093/brain/94.4.681] [PMID] [DOI:10.1093/brain/94.4.681]
2. Johnson KL, Nicol T, Zecker SG, Bradlow AR, Skoe E, Kraus N. Brainstem encoding of voiced consonant–vowel stop syllables. Clinical Neurophysiology. 2008; 119(11):2623-5. [DOI:10.1016/j.clinph.2008.07.277] [PMID] [DOI:10.1016/j.clinph.2008.07.277]
3. Blumstein SE, Isaacs E, Mertus J. The role of the gross spectral shape as a perceptual cue to place of articulation in initial stop consonants. The Journal of the Acoustical Society of America. 1982; 72(1):43-50. [DOI:10.1121/1.388023] [PMID] [DOI:10.1121/1.388023]
4. Ballachanda BB, Moushegian G, Stillman RD. Adaptation of the auditory brainstem response: Effects of click intensity, polarity, and position. Journal of the American Academy of Audiology. 1992; 3(4):275-82. [PMID] [PMID]
5. Valderrama JT, de la Torre A, Alvarez I, Segura JC, Thornton ARD, Sainz M, et al. Automatic quality assessment and peak identification of auditory brainstem responses with fitted parametric peaks. Computer Methods and Programs in Biomedicine. 2014; 114(3):262-75. [DOI:10.1016/j.cmpb.2014.02.015] [PMID] [DOI:10.1016/j.cmpb.2014.02.015]
6. Don M, Elberling C. Use of quantitative measures of auditory brainstem response peak amplitude and residual background noise in the decision to stop averaging. The Journal of the Acoustical Society of America. 1996; 99(1):491-9. [DOI:10.1121/1.414560] [PMID] [DOI:10.1121/1.414560]
7. Sparacino G, Milani S, Arslan E, Cobelli C. A Bayesian approach to estimate evoked potentials. Computer Methods and Programs in Biomedicine. 2002; 68(3):233-48. [DOI:10.1016/S0169-2607(01)00175-4] [DOI:10.1016/S0169-2607(01)00175-4]
8. Sadeghian A, Dajani HR, Chan ADC. Classification of speech-evoked brainstem responses to English vowels. Speech Communication. 2015; 68:69-84. [DOI:10.1016/j.specom.2015.01.003] [DOI:10.1016/j.specom.2015.01.003]
9. Fridman J, John E, Bergelson M, Kaiser J, Baird H. Application of digital filtering and automatic peak detection to brain stem auditory evoked potential. Electroencephalography and Clinical Neurophysiology. 1982; 53(4):405-16. [DOI:10.1016/0013-4694(82)90005-0] [DOI:10.1016/0013-4694(82)90005-0]
10. Chan FHY, Lam FK, Poon PWF, Qiu W. Detection of brainstem auditory evoked potential by adaptive filtering. Medical and Biological Engineering and Computing. 1995; 33(1):69-75. [DOI:10.1007/BF02522949] [PMID] [DOI:10.1007/BF02522949]
11. Grönfors T. Peak identification of auditory brainstem responses with multifilters and attributed automaton. Computer Methods and Programs in Biomedicine. 1993; 40(2):83-7. [DOI:10.1016/0169-2607(93)90002-3] [DOI:10.1016/0169-2607(93)90002-3]
12. Galbraith GC. Enhanced brainstem and cortical evoked response amplitudes: Single-trial covariance analysis. Perceptual and Motor Skills. 2001; 92(3):659-72. [DOI:10.2466/pms.2001.92.3.659] [PMID] [DOI:10.2466/pms.2001.92.3.659]
13. Sundaramoorthy V, Pont MJ, Degg C, Cook JA. A computerized database of 'normal'auditory brainstem responses. British Journal of Audiology. 2000; 34(3):197-201. [DOI:10.3109/03005364000000129] [PMID] [DOI:10.3109/03005364000000129]
14. Vannier E, Adam O, Motsch JF. Objective detection of brainstem auditory evoked potentials with a priori information from higher presentation levels. Artificial Intelligence in Medicine. 2002; 25(3):283-301. [DOI:10.1016/S0933-3657(02)00029-5] [DOI:10.1016/S0933-3657(02)00029-5]
15. Weber BA, Fletcher GL. A computerized scoring procedure for auditory brainstem response audiometry. Ear and Hearing. 1980; 1(5):233-6. [DOI:10.1097/00003446-198009000-00001] [PMID] [DOI:10.1097/00003446-198009000-00001]
16. Arnold SA. Objective versus visual detection of the auditory brain stem response. Ear and Hearing. 1985; 6(3):144-50. [DOI:10.1097/00003446-198505000-00004] [PMID] [DOI:10.1097/00003446-198505000-00004]
17. Kakiashvili T, Koczkodaj WW, Woodbury-Smith M. Improving the medical scale predictability by the pairwise comparisons method: Evidence from a clinical data study. Computer Methods and Programs in Biomedicine. 2012; 105(3):210-6. [DOI:10.1016/j.cmpb.2011.09.011] [PMID] [DOI:10.1016/j.cmpb.2011.09.011]
18. Jafarpisheh AS, Jafari AH, Abolhassani M, Farhadi M, Sadjedi H, Pourbakht A, et al. Nonlinear feature extraction for objective classification of complex auditory brainstem responses to diotic perceptually critical consonant-vowel syllables. Auris Nasus Larynx. 2016; 43(1):37-44. [DOI:10.1016/j.anl.2015.06.003] [PMID] [DOI:10.1016/j.anl.2015.06.003]
19. McMath RC. Engineering the New South: Georgia Tech, 1885-1985. Athens: University of Georgia Press; 1985.
20. Skoe E, Kraus N. Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing. 2010; 31(3):302-4. [DOI:10.1097/AUD.0b013e3181cdb272] [PMID] [PMCID] [DOI:10.1097/AUD.0b013e3181cdb272]
21. Galbraith GC, Bhuta SM, Choate AK, Kitahara JM, Mullen TA. Brain stem frequency‐following response to dichotic vowels during attention. Neuroreport. 1998; 9(8):1889-93. [DOI:10.1097/00001756-199806010-00041] [PMID] [DOI:10.1097/00001756-199806010-00041]
22. Krishnan A, Gandour JT, Bidelman GM. Experience-dependent plasticity in pitch encoding: From brainstem to auditory cortex. Neuroreport. 2012; 23(8):498-502. [DOI:10.1097/WNR.0b013e328353764d] [PMID] [PMCID] [DOI:10.1097/WNR.0b013e328353764d]
23. Zounopoulos T, Kraus N. Learning to encode timing: Mechanisms of plasticity in the auditory brainstem. Neuron. 2009; 62(4):463-9. [DOI:10.1016/j.neuron.2009.05.002] [PMID] [PMCID] [DOI:10.1016/j.neuron.2009.05.002]
24. Trussell LO. Synaptic mechanisms for coding timing in auditory neurons. Annual Review of Physiology. 1999; 61(1):477-96. [DOI:10.1146/annurev.physiol.61.1.477] [PMID] [DOI:10.1146/annurev.physiol.61.1.477]
25. Mochizuki Y, Go T, Ohkubo H, Tatara T, Motomura T. Developmental changes of Brainstem Auditory Evoked Potentials (BAEPs) in normal human subjects from infants to young adults. Brain and Development. 1982; 4(2):127-36. [DOI:10.1016/S0387-7604(82)80006-5] [DOI:10.1016/S0387-7604(82)80006-5]
26. Stockard JE. Brainstem auditory-evoked responses: Normal variation as a function of stimulus and subject characteristics. Archives of Neurology. 1979; 36(13):823-31. [DOI:10.1001/archneur.1979.00500490037006] [PMID] [DOI:10.1001/archneur.1979.00500490037006]

Send email to the article author


Designed & Developed by : Yektaweb