Volume 16, Issue 2 (June 2018)                   Iranian Rehabilitation Journal 2018, 16(2): 185-194 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mandehgari Najafabadi M, Azad A, Mehdizadeh H, Taghizadeh G. Predictive Value of Somatosensation for Manual Dexterity and Upper Limb Motor Function in Stroke Survivors. Iranian Rehabilitation Journal 2018; 16 (2) :185-194
URL: http://irj.uswr.ac.ir/article-1-819-en.html
1- Occupational Therapy Department, School of Rehabilitation Science, Iran University of Medical Sciences, Tehran, Iran.
2- Assistant Professor, Occupational Therapy Department, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
3- Occupational Therapy Department, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran.
4- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
Abstract:   (7468 Views)
Objectives: One of the most disabling impairments following stroke is upper limb impairment. Despite the important role of somatosensory function in motor control and high prevalence of somatosensory deficits in stroke survivors, little attention has been paid to its effect on UE motor function in chronic stroke survivors. Thus, the aim of this study is to explore the correlation between different somatosensations and manual dexterity as well as UE motor function in these patients.
Methods: In this correlational study, 225 chronic stroke survivors (112 female and 113 male) participated, selected by simple non-probability method among the stroke survivors admitted to the rehabilitation centers in Tehran. The lower-order somatosensations, including light touch and wrist Proprioception, were evaluated by Weinstein Enhanced Sensory Test (WEST) and Wrist Position Sense Test (WPST), respectively. The higher-order somatosensations were measured by static and moving 2-Point Discrimination (s2PD and m2PD, respectively), Hand Active Sensation Test (HAST) and Haptic Object Recognition Test (HORT). Gross and fine manual dexterity and UE motor function were assessed using Box-Block Test (BBT), Purdue Pegboard Test (PPT) and Wolf Motor Function Test (WMFT), respectively.
Results: The multiple regression models showed that WPST alone accounted for the 38.8%- 56.6% of the variance in manual dexterity and UE motor function. The WEST was the second most significant predictor in all regression models. The HORT, m2PD and HAST explained a small percent of the variance in regression models. 
Discussion: These results suggest that treatments that target somatosensory impairments, especially wrist Proprioception and light touch, may be particularly important for improving manual dexterity and UE motor function in chronic stroke survivors.
Full-Text [PDF 626 kb]   (1788 Downloads) |   |   Full-Text (HTML)  (1799 Views)  
Article type: Original Research Articles | Subject: Occupational therapy
Received: 2017/10/1 | Accepted: 2018/02/20 | Published: 2018/06/1

References
1. Nakayama H, Jørgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: The Copenhagen stroke study. Archives of Physical Medicine and Rehabilitation. 1994; 75(4):394-8. [DOI:10.1016/0003-9993(94)90161-9] [DOI:10.1016/0003-9993(94)90161-9]
2. Sveen U, Bautz-Holter E, Sodring KA, Wyller TO, Laake K. Association between impairments, self-care ability and social activities 1 year after stroke. Disability and Rehabilitation. 1999; 21(8):372-7. [DOI:10.1080/096382899297477] [PMID] [DOI:10.1080/096382899297477]
3. Meyer S, Karttunen AH, Thijs V, Feys H, Verheyden G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke: A systematic review. Physical Therapy. 2014; 94(9):1220-31. [DOI:10.2522/ptj.20130271] [PMID] [DOI:10.2522/ptj.20130271]
4. Squire L, Berg D, Bloom FE, du Lac S, Ghosh A, Spitzer NC. Fundamental neuroscience: The somatosensory system. Waltham, MA: Academic Press; 2008.
5. Carey LM. Stroke rehabilitation: Insights from neuroscience and imaging. Oxford: Oxford University Press; 2012. [DOI:10.1093/med/9780199797882.001.0001] [DOI:10.1093/med/9780199797882.001.0001]
6. Doyle S, Fasoli SE, McKenna KT. Interventions for sensory impairment in the upper limb after stroke. In: Doyle S (ed), Cochrane database of systematic reviews. Hoboken: John Wiley & Sons, Ltd; 2007. [DOI:10.1002/14651858.CD006331] [DOI:10.1002/14651858.CD006331]
7. Carey LM. Somatosensory loss after stroke. Critical Reviews™ in Physical and Rehabilitation Medicine. 1995; 7(1):51-91. [DOI: 10.1615/critrevphysrehabilmed.v7.i1.40] [DOI:10.1615/CritRevPhysRehabilMed.v7.i1.40]
8. Shah SK. Deficits affecting the function of the paralyzed arm following hemiplegia. Australian Occupational Therapy Journal. 1978; 25(2):12-9. [DOI:10.1111/j.1440-1630.1978.tb00656.x] [DOI:10.1111/j.1440-1630.1978.tb00656.x]
9. Carey LM, Matyas TA, Oke LE. Sensory loss in stroke patients: Effective training of tactile and proprioceptive discrimination. Archives of Physical Medicine and Rehabilitation. 1993; 74(6):602-11. [DOI:10.1016/0003-9993(93)90158-7] [DOI:10.1016/0003-9993(93)90158-7]
10. Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982; 105(3):515-42. [DOI:10.1093/brain/105.3.515] [PMID] [DOI:10.1093/brain/105.3.515]
11. Cordo PJ. Kinesthetic control of a multipoint movement sequence. Journal of Neurophysiology. 1990; 63(1):161-72. [DOI:10.1152/jn.1990.63.1.161] [PMID] [DOI:10.1152/jn.1990.63.1.161]
12. Hasan Z. Role of proprioceptors in neural control. Current Opinion in Neurobiology. 1992; 2(6):824-9. [DOI:10.1016/0959-4388(92)90140-G] [DOI:10.1016/0959-4388(92)90140-G]
13. Shamay NS, William TW, Patrick KW, Philip TT, Jefferry WC. Sensorimotor impairments of paretic upper limb correlates with activities of daily living in subjects with chronic stroke. South African Journal of Physiotherapy. 2011; 67(1):9-16. [DOI:10.4102/sajp.v67i1.34] [DOI:10.4102/sajp.v67i1.34]
14. Meyer S, De Bruyn N, Lafosse C, Van Dijk M, Michielsen M, Thijs L. Somatosensory impairments in the upper limb post-stroke: Distribution and association with motor function and visuospatial neglect. Neurorehabilitation and Neural Repair. 2016; 30(8):731-42. [DOI:10.1177/1545968315624779] [PMID] [DOI:10.1177/1545968315624779]
15. Meyer S, De Bruyn N, Krumlinde-Sundholm L, Peeters A, Feys H, Thijs V. Associations between sensorimotor impairments in the upper limb at 1 week and 6 months after stroke. Journal of Neurologic Physical Therapy. 2016; 40(3):186-95. [DOI:10.1097/NPT.0000000000000138] [PMID] [DOI:10.1097/NPT.0000000000000138]
16. Scalha TB, Miyasaki E, Lima NM, Borges G. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke. Arquivos de Neuro-Psiquiatria. 2011; 69(4):624-9. [DOI:10.1590/S0004-282X2011000500010] [PMID] [DOI:10.1590/S0004-282X2011000500010]
17. Park SW, Wolf SL, Blanton S, Winstein C, Nichols Larsen DS. The excite trial: Predicting a clinically meaningful motor activity log outcome. Neurorehabilitation and Neural Repair. 2008; 22(5):486-93. [DOI:10.1177/1545968308316906] [PMID] [PMCID] [DOI:10.1177/1545968308316906]
18. Azad A, Taghizadeh G, Mohammadian E, Mohmmadinezhad T, Lajevardi L. Persian translation and test-retest reliability of the Activities-specific Balance Confidence Scale in Iranian Chronic Stroke. Journal of Modern Rehabilitation. 2017; 10(2):74-9.
19. Azad A, Mehraban AH, Mehrpour M, Mohammadi B. Clinical assessment of fear of falling after stroke: validity, reliability and responsiveness of the Persian version of the Fall Efficacy Scale-International. Medical Journal of the Islamic Republic of Iran. 2014; 28:131. [PMCID] [PMID] [PMCID]
20. Bailey MJ, Riddoch MJ, Crome P. Evaluation of a test battery for hemineglect in elderly stroke patients for use by therapists in clinical practice. Neurorehabilitation. 2000; 14(3):139-50. [PMID] [PMID]
21. Daneshjoo F, Azad A, Mandehgary M, Mehdizadeh M, Taghizadeh G. Correlation between lower and higher order sensory functions and manual dexterity in dominant and non-dominant hand of patients with idiopathic Parkinson's disease. Journal of Basic and Clinical Pathophysiology. 2016; 4(2):27-36.
22. Taghizadeh G, Azad A, Kashefi S, Fallah S, Daneshjoo F. The effect of sensory-motor training on hand and upper extremity sensory and motor function in patients with idiopathic Parkinson disease. Journal of Hand Therapy. 2017; 1-7. [DOI:10.1016/j.jht.2017.08.001] [DOI:10.1016/j.jht.2017.08.001]
23. Arakawa T, Otao H, Okamura M, Ono T. Reliability of the Semmes-Weinstein monofilaments test in stroke patients. Japanese Journal of Health Promotion and Physical Therapy. 2012; 2(2):65-68. [DOI:10.9759/hppt.2.65] [DOI:10.9759/hppt.2.65]
24. Carey LM, Oke LE, Matyas TA. Impaired limb position sense after stroke: A quantitative test for clinical use. Archives of Physical Medicine and Rehabilitation. 1996; 77(12):1271-8. [DOI:10.1016/S0003-9993(96)90192-6] [DOI:10.1016/S0003-9993(96)90192-6]
25. Wolny T, Linek P, Michalski P. Inter-rater reliability of two-point discrimination in acute stroke patients. Neurorehabilitation. 2017; 1-8. [DOI:10.3233/NRE-171464] [DOI:10.3233/NRE-171464]
26. Williams PS, Basso DM, Case Smith J, Nichols Larsen DS. Development of the Hand Active Sensation Test: Reliability and validity. Archives of Physical Medicine and Rehabilitation. 2006; 87(11):1471-7. [DOI:10.1016/j.apmr.2006.08.019] [PMID] [DOI:10.1016/j.apmr.2006.08.019]
27. Norman JF, Crabtree CE, Norman HF, Moncrief BK, Herrmann M, Kapley N. Aging and the visual, haptic, and cross-modal perception of natural object shape. Perception. 2006; 35(10):1383-95. [DOI:10.1068/p5504] [PMID] [DOI:10.1068/p5504]
28. Desrosiers J, Bravo G, Hébert R, Dutil É, Mercier L. Validation of the Box and Block Test as a measure of dexterity of elderly people: Reliability, validity, and norms studies. Archives of Physical Medicine and Rehabilitation. 1994; 75(7):751-5. [PMID] [PMID]
29. Azad A, Taghizadeh G, Ghorbanpoor H, Lajevardi L, Farhadian M. Relationship between laterality and handedness with the higher order sensory functions and manual dexterity of the elderly. Iranian Rehabilitation Journal, 2017; 15(4):367-76. [DOI:10.29252/nrip.irj.15.4.367] [DOI:10.29252/nrip.irj.15.4.367]
30. Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf Motor Function Test as outcome measure for research in patients after stroke. Stroke. 2001; 32(7):1635-9. [DOI:10.1161/01.STR.32.7.1635] [PMID] [DOI:10.1161/01.STR.32.7.1635]
31. Roby Brami A, Fuchs S, Mokhtari M, Bussel B. Reaching and grasping strategies in hemiparetic patients. Motor Control. 1997; 1(1):72-91. [DOI:10.1123/mcj.1.1.72] [DOI:10.1123/mcj.1.1.72]
32. Bourane S, Grossmann KS, Britz O, Dalet A, Del Barrio MG, Stam FJ. Identification of a spinal circuit for light touch and fine motor control. Cell. 2015; 160(3):503-15. [DOI:10.1016/j.cell.2015.01.011] [PMID] [PMCID] [DOI:10.1016/j.cell.2015.01.011]
33. Bowden JL, Lin GG, McNulty PA. The prevalence and magnitude of impaired cutaneous sensation across the hand in the chronic period post-stroke. PLOS ONE. 2014; 9(8):e104153. [DOI:10.1371/journal.pone.0104153] [PMID] [PMCID] [DOI:10.1371/journal.pone.0104153]
34. Gordon AM, Charles J, Steenbergen B. Fingertip force planning during grasp is disrupted by impaired sensorimotor integration in children with hemiplegic cerebral palsy. Pediatric Research. 2006; 60(5):587-91. [DOI:10.1203/01.pdr.0000242370.41469.74] [PMID] [DOI:10.1203/01.pdr.0000242370.41469.74]
35. Smith PS, Dinse HR, Kalisch T, Johnson M, Walker Batson D. Effects of repetitive electrical stimulation to treat sensory loss in persons post-stroke. Archives of Physical Medicine and Rehabilitation. 2009; 90(12):2108-11. [DOI:10.1016/j.apmr.2009.07.017] [PMID] [DOI:10.1016/j.apmr.2009.07.017]

Send email to the article author


Designed & Developed by : Yektaweb